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Abstract This paper describes a system for interpret-

ing a scene by assigning a semantic label at every pixel

and inferring the spatial extent of individual object

instances together with their occlusion relationships.

First we present a method for labeling each pixel aimed

at achieving broad coverage across hundreds of object

categories, many of them sparsely sampled. This method

combines region-level features with per-exemplar slid-

ing window detectors. Unlike traditional bounding box

detectors, per-exemplar detectors perform well on classes

with little training data and high intra-class variation,

and they allow object masks to be transferred into the

test image for pixel-level segmentation. Next, we use

per-exemplar detections to generate a set of candidate

object masks for a given test image. We then select a

subset of objects that explain the image well and have

valid overlap relationships and occlusion ordering. This

is done by minimizing an integer quadratic program ei-

ther using a greedy method or a standard solver. We
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alternate between using the object predictions to refine

the pixel labels and using the pixel labels to improve

the object predictions. The proposed system obtains

promising results on two challenging subsets of the La-

belMe dataset, the largest of which contains 45,676 im-

ages and 232 classes.

1 Introduction

This paper addresses the problem of parsing scene im-

ages in terms of their constituent object classes. Our

goal is achieving broad coverage – the ability to recog-

nize hundreds of classes that commonly occur in every-

day outdoor and indoor environments. A major chal-

lenge in meeting this goal is posed by the non-uniform
statistics of object classes in realistic scene images. In

a reasonably large and diverse scene dataset such as

LabelMe [26], just a handful of classes constitute a

large portion of all image pixels and object instances,

while a much larger number of classes occupy a small

percentage of image pixels and have relatively few in-

stances each. The more frequent classes are predom-

inantly “stuff” such as sky, roads, trees, and build-

ings; while the less frequent ones tend to be “things”

such as trucks, parking meters, dogs, vases, etc. “Stuff”

categories have no consistent shape but fairly consis-

tent texture, so they can be adequately handled by im-

age parsing systems based on pixel- or region-level fea-

tures [3,5,7,20,22,27–29,34]. On the other hand, “things”

are better characterized by overall shape than local ap-

pearance, so to do better on such classes, it becomes

necessary to incorporate detectors that model the ob-

ject shape.

The first contribution of our paper is a novel broad-

coverage image parsing approach that labels every pixel
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Fig. 1 Overview of our region- and detector-based pixel labeling approach. The test image (a) contains a bus – a relatively
rare “thing” class. Our region-based parsing system [29] computes class likelihoods (b) based on superpixel features, and it
correctly identifies “stuff” regions like sky, road, and trees, but is not able to get the bus (c). To find “things” like bus and
car, we run per-exemplar detectors [21] on the test image (d) and transfer masks corresponding to detected training exemplars
(e). Since the detectors are not well suited for “stuff,” the result of detector-based parsing (f) is poor. However, combining
region-based and detection-based data terms (g) gives the highest accuracy of all and correctly labels most of the bus and part
of the car.

with its class by combining region- and detector-based

cues (see Figure 1 for an overview). We obtain the

region-based cues from the superpixel-based parsing sys-

tem we have developed earlier [29]. For the detector-

based cues, we rely on the relatively new framework

of per-exemplar detectors or exemplar-SVMs proposed

by Malisiewicz et al. [21]. Specifically, we train a per-

exemplar detector for each ground truth object instance

in our training set. When a per-exemplar detector fires

in a test image, we take the segmentation mask from the

corresponding training exemplar and transfer it into the

test image to form a segmentation hypothesis. We accu-

mulate the per-exemplar detector masks for each class

individually to generate a detector-based data term and

combine this with the region-based data term from [29]

to produce a dense pixel labeling.

To our knowledge, our approach is the first to use

per-exemplar detectors to help segment objects (Mal-

isiewicz et al. [21] suggest this idea, but do not evaluate

it quantitatively). Furthermore, the use of per-exemplar

detectors gives us several advantages over other exist-

ing image parsing systems that rely on sliding window

detectors [9,11,13,16,19,33]. First, standard detectors

such as Deformable Part Models (DPMs) [8] produce

only bounding box hypotheses, and inferring a pixel-

level segmentation from a bounding box is an open

research problem in its own right. By contrast, with

per-exemplar detectors we can directly transfer ground

truth masks into detected locations in the test images to

obtain candidate instance segmentations. Second, tra-

ditional bounding box detectors typically require lots of

training examples per category in order to achieve good

performance, while per-exemplar detectors are more ap-

propriate for sparsely sampled classes with high intra-

class variation.

Unfortunately, merely labeling each pixel in the im-

age with its class produces a scene interpretation that is

impoverished and ambiguous. In particular, a pixel la-

beling does not tell us anything about object instances.

For example, in Figure 2(a) it is impossible to know

whether the big blob of “car” labels represents a num-

ber of overlapping cars or a single large car. As our

second contribution, we extend our system to infer ob-

ject instances defined by segmentation masks, as well as

overlap relationships between different instances. Briefly,

we start with our pixel labeling and per-exemplar de-

tections to obtain a set of candidate object instances.

Then we select a subset of instances that agree with the

current pixel labeling and respect overlap and occlusion

ordering constraints learned from the training data. For

example, we may learn that headlights occur in front

of cars with 100% overlap,1 while cars usually overlap

other cars by at most 50%. We formulate instance in-

1 Technically, headlights are attached to cars, but we do
not make a distinction between attachment and occlusion in
this work.
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Fig. 2 Overview of our instance inference approach. We use our region- and detector-based image parser (Figure 1) to generate
semantic labels for each pixel (a) and a set of candidate object masks (not shown). Next, we select a subset of these masks to
cover the image (b). We alternate between refining the pixel labels and the object predictions until we obtain the final pixel
labeling (c) and object predictions (d). On this image, our initial pixel labeling contains two “car” blobs, each representing
three cars, but the object predictions separate these blobs into individual car instances. We also infer an occlusion ordering
(e), which places the road behind the cars, and puts the three nearly overlapping cars on the left side in the correct depth
order. Note that our instance-level inference formulation does not require the image to be completely covered. Thus, while our
pixel labeling erroneously infers two large “building” areas in the mid-section of the image, these labels do not have enough
confidence, so no corresponding “building” object instances get selected.

ference as an integer quadratic program and minimize

it either using a greedy method or a standard solver.

We also show how to refine the inferred pixel labels

and instances by alternating between the two predic-

tion tasks. The result is a layered scene representation

as illustrated in Figure 2.

Our presentation is organized as follows. Section 2

surveys related work on image parsing and object de-

tection. Sections 3 and 4 describe our methods for pixel

labeling and instance inference, and Section 5 presents

our experimental results. Our system produces state-of-

the-art results on two challenging datasets derived from

LabelMe: LMO [20] and LM+SUN [30]. In particular,
LM+SUN, with 45,676 images and 232 labels, has the

broadest coverage of any image parsing benchmark to

date. Complete code and results for our system can be

found at http://www.cs.unc.edu/SuperParsing.

2 Related Work

A growing number of scene interpretation methods com-

bine pixel labeling and detection [9,11,13,16,19,33]. How-

ever, as mentioned in the Introduction, the detectors

used by most of these methods produce only bounding

box hypotheses. Ladický et al. [19], for example, aug-

ment a conditional random field (CRF) pixel labeling

approach with detector-based potentials defined over

object segmentation hypotheses. To obtain these hy-

potheses automatically from detected bounding boxes,

Ladický et al. [19] rely on GrabCut [24], which uses

only on local color cues and does not take object shape

into account. Yao et al. [33] propose a more expressive

CRF formulation that jointly infers image-level class la-

bels, region labels, and bounding boxes. This approach

makes use of shape prior masks corresponding to in-

dividual DPM components, but it does not explicitly

associate a segmentation mask with each inferred ob-

ject instance, and does not model overlap between in-

stances. Kim et al. [16] introduce another augmented

CRF for relating segment labels and bounding box hy-

potheses, one that is capable of producing instance-

level segmentations. But while their detected bound-

ing boxes may overlap, the segmentations cannot as

their system only predicts a single label per pixel and
does not model occlusion. Furthermore, the approaches

of [16,19,33] rely on rather complex inference and are

evaluated only on small datasets such as Stanford [10],

CamVid [3] and MSRC [27], which contain hundreds of

images and tens of classes, whereas we want to scale

parsing to datasets consisting of tens of thousands of

images and hundreds of classes.

An important aspect of our work is its ability to pro-

duce a layered scene representation. In this, it is related

to the work of Guo and Hoiem [11], who infer back-

ground classes (e.g., building, road) at every pixel, even

in regions where they are not visible. They learn the re-

lationships between occluders and background classes

(e.g., cars are found on the road and in front of build-

ings) to boost the accuracy of background prediction.

We go further, inferring not only the occluded back-

ground, but all the classes and their relationships. More

similarly to us, Yang et al. [32] infer object instances

and their depth ordering. However, their system is aimed
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at foreground segmentation on the PASCAL dataset [6],

which is a different task from ours that imposes its

own system requirements. Namely, PASCAL segmenta-

tion is concerned about two dozen “thing” classes and

does not require all image pixels to be labeled, whereas

we are interested in explaining every pixel – both the

foreground “things” and the background “stuff” – in

datasets consisting of hundreds of categories. Accord-

ingly, our system uses both segmentation regions and

detectors to generate object hypotheses, while [32] uses

only detectors. Since detectors do not work well on

background classes, Yang et al. [32] have little hope

of getting the background pixels correct. On the other

hand, they use DPMs, which are more accurate for

PASCAL categories than per-exemplar detectors, and

have a more sophisticated foreground segmentation model

for the smaller number of classes they consider, so we

could not compete with them on their task.

The recent approach of Isola and Liu [15] is perhaps

the most closely related to our work both in terms of

its task and its output representation. This approach

parses the scene by finding a configuration or “collage”

of ground truth objects from the training set that match

the visual appearance of the query image. The trans-

ferred objects can be translated and scaled to match

the scene and have an inferred depth order. Isola and

Liu [15] show that their system can run on datasets on

the same scale as the ones used in this work. However,

as the experiments of Section 5 demonstrate, our sys-

tem considerably outperforms theirs in terms of pixel-

level accuracy on the LMO dataset.

3 Pixel Label Inference

This section presents our method for dense pixel label-

ing by combining region- and detector-based cues. As

summarized in Figure 1, we obtain a region-based data

term from the system of [30] and a detector-based data

term from transferred segmentation masks associated

with per-exemplar detections. Sections 3.1 and 3.2 will

describe the respective data terms in detail. Section 3.3

will explain how these terms are combined with into a

single unary potential with the help of a learned sup-

port vector machine, and Section 3.4 will present the

CRF objective functions we use to obtain the final pixel

labeling.

3.1 Region-Based Data Term

For region-based parsing, we use the scalable nonpara-

metric system we have developed earlier [30]. Given a

query image, this system first uses global image descrip-

tors to identify a retrieval set of training images similar

to the query. Then the query is segmented into regions

or superpixels; each region is matched to regions in the

retrieval set based on 20 features representing position,

shape, color, and texture and these matches are used

to produce a log-likelihood ratio score L(s, c) for label

c at region S:

L(S, c) = log
P (S|c)
P (S|c̄)

=
∑
k

log
P (fk|c)
P (fk|c̄)

, (1)

where P (fk|c) (resp. P (fk|c̄)) is the likelihood of feature

type k for region S given class c (resp. all classes but

c). The likelihoods are given by nonparametric nearest-

neighbor estimates (see [30] for details). We use this

score to define our region-based data term ER for each

pixel location p and class c:

ER(p, c) = L(Sp, c) , (2)

where Sp is the region containing p. Figure 1(b) shows

the region-based data terms for selected categories for

the test image in Figure 1(a).

3.2 Detector-Based Data Term

Following the exemplar-SVM framework of [21], we train

a per-exemplar detector for each labeled object instance

in our dataset. The feature representation we use is the

histogram of oriented gradients (HOG) [4] over the in-

stance bounding box. While it may seem intuitive to

only train detectors for “thing” categories, we train

them for all categories, including ones seemingly inap-

propriate for a sliding window approach, such as “sky.”

As our experiments will demonstrate, this actually yields

the best results for the combined region- and detector-

based system. We follow the detector training proce-

dure of [21], with negative mining done on all training

images that do not contain an object of the same class.

For our largest LM+SUN dataset we only do negative

mining on 1,000 training images most similar to the

positive exemplar’s image (we have found that using

more does not increase the detection accuracy).

At test time, given an image that needs to be parsed,

we first obtain a retrieval set of globally similar training

images as in Section 3.1. Then we run the detectors as-

sociated with the first k instances of each class in that

retrieval set (the instances are ranked in decreasing or-

der of the similarity of their image to the test image,

and different instances in the same image are ranked ar-

bitrarily). We restrict k purely to reduce computation;

all our experiments use k = 100. Next, we take all de-

tections that are above a given threshold td (we use the
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Fig. 3 Computation of the detector-based data term. For
each positive detection (green bounding box) in the test image
(middle row) we transfer the mask (red polygon) from the
associated exemplar (top) into the test image. The data term
for “car” (bottom) is obtained by summing all the masks
weighted by their detector responses.

negative margin or td = −1 as suggested in [21]). For

each detection we project the associated object mask

into the detected bounding box (Figure 3). To compute

the detector-based data term ED for a class c and pixel

p, we simply take the sum of all detection masks from

that class weighted by their detection scores:

ED(p, c) =
∑

d∈Dp,c

(wd − td) , (3)

where Dp,c is the set of all detections for class c whose

transferred mask overlaps pixel p and wd is the detec-

tion score of d. Figure 1(e) shows some detector-based

data terms for the test image of Figure 1(a).

Note that the full training framework of [21] in-

cludes computationally intensive calibration and con-

textual pooling procedures that are meant to make scores

of different per-exemplar detectors more consistent. These

procedures are very computationally intensive, as they

require coupling detectors that are otherwise trained

independently. In our implementation, we have found

these steps to be unnecessary, as they are at least par-

tially superseded by the combined region- and detector-

based inference scheme described in the next section.

Even without calibration, training the per-exemplar

SVMs in parallel on a cluster of 512 nodes takes approx-

imately four days for our largest dataset (see Section

5.3 for more details on running times). To reduce this

training time, we have also experimented with the ap-

proach of Hariharan et al. [12] that replaces the SVM

with a classifier obtained via linear discriminant anal-

ysis (LDA). In this framework, given an exemplar rep-

resented by a HOG feature vector h, the weight vector

w of the corresponding classifier is given by

w = Σ−1 (h− µ0) , (4)

where Σ is the covariance matrix of the data and and

µ0 is the mean for windows of the same size as h across

the training set (i.e., the background mean). At first it

would seem that we would need to estimate a separate

Σ and µ0 for every possible window size, but Hariha-

ran et al. [12] show how to compute a single mean and

covariance, from which we can then extract the mean

and covariance for any window size.

We can use the LDA classifiers in place of the SVMs

to produce the response value wd in eq. (3). The only

modification needed is to find a new threshold td for

our LDA setup; a grid search over the training set has

yielded the value of 0.25, which we use in all subsequent

experiments involving LDA. A comparison of perfor-

mance of per-exemplar SVMs and LDA classifiers will

be given in Section 5.1.

3.3 SVM Combination

Once we run the parsing systems of Sections 3.1 and

3.2 on a test image, for each pixel p and each class c we

end up with two data terms, ER(p, c) and ED(p, c), as

defined by eqs. (2) and (3). For a dataset with C classes,

concatenating these values gives us a 2C-dimensional

feature vector at each pixel. Next, we train C one-vs-all

SVMs, each of which takes as input the 2C-dimensional

feature vectors and returns final per-pixel scores for a

given class c.

Training data for each SVM is generated by running

region- and detector-based parsing on the entire train-

ing set using a leave-one-out method: for each training

image a retrieval set of similar training images is ob-
tained, regions are matched to generate ER(p, c), and

the per-exemplar detectors from the retrieval set are

run to generate ED(p, c). Unfortunately, the resulting

amount of data is huge: our largest dataset has over

nine billion pixels, which would require 30 terabytes of

storage. To make SVM training feasible, we must sub-

sample the data – a tricky task given the unbalanced

class frequencies in our many-category datasets.

We could subsample the data uniformly (i.e., re-

duce the number of points by a fixed factor without

regard to class labels). This preserves the relative class

frequencies, but in practice it heavily biases the clas-

sifier towards the more common classes. Conversely,

sub-sampling the data so that each class has a roughly

equal number of points produces a bias towards the

rare classes. We have found that combining these two

schemes in a 2:1 ratio achieves a good trade-off on all

our datasets. That is, we obtain 67% of the training

data by uniform sampling and 33% by even per-class

sampling. We train all SVMs on 250,000 points – using
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more did not significantly improve performance for any

of our setups.

For training one-vs-all SVMs, we normalize each fea-

ture dimension by its standard deviation and use five-

fold cross-validation to find the regularization constant.

Another important aspect of the implementation is the

choice of the SVM kernel. As will be shown in Sec-

tion 5, the linear kernel already does quite well, but we

can obtain further improvements with the RBF kernel.

Since it is infeasible to train a nonlinear SVM with the

RBF kernel on our largest dataset, we approximate it by

training a linear SVM on top of the random Fourier fea-

ture embedding [23]. We set the dimensionality of the

embedding to 4,000 and find the kernel bandwidth us-

ing fivefold cross-validation. Experiments on the LMO

dataset confirm the quality of the approximation (Table

3).

The resulting SVMs produce C responses at each

pixel. Let ESVM(pi, c) denote the response of the SVM

at pixel pi for class c. To obtain the final labeling, we

could simply take the highest-scoring class at each pixel,

but this is well known to produce noisy results. Instead,

we smooth the labels using a CRF objective function,

as described in the next section.

3.4 CRF Smoothing

We compute a global pixel labeling of the entire image

by minimizing a CRF objective function defined over

the field of pixel labels c:

E(c) =
∑
i

ψu(pi, ci)︸ ︷︷ ︸
unary (eq.6)

+ α
∑
i

ψsp(pi, ci)︸ ︷︷ ︸
spatial prior (eq.7)

+
∑

(i,j)∈N

ψsm(ci, cj)︸ ︷︷ ︸
smoothing (eq.8 or 9)

(5)

where i indexes the image pixels and N is a set of edges

determining pairwise clique relationships (we have ex-

perimented with two different neighborhood structures,

as described below).

The unary potential ψu(pi, ci) is obtained from the

SVM response for pixel pi and class ci:

ψu(pi, ci) = − log σ(ESVM(pi, ci)) , (6)

where σ(t) = 1/(1+e−t) is the sigmoid function turning

the raw SVM output into a probability-like value.

The spatial term ψsp(pi, ci), similar to the one from [20],

represents the prior probability that a class ci occurs at

pixel pi, estimated from counts of labels at each loca-

tion across the training set:

ψsp(pi, ci) = − log histci(pi) (7)

where histci is the spatial histogram for class ci over the

training set, normalized to sum to one at each pixel. We

have found that including the spatial prior improves our

per-pixel labeling accuracy slightly (typically by less

than 1%) without smoothing away any of the smaller

or rarer classes. The constant α is set to 0.1 by grid

search over the LMO dataset.

For the pairwise spatial smoothing terms ψsm we

experiment with two different CRF graph structures:

an 8-connected graph and a fully connected graph. For

the 8-connected one, only adjacent pairs of pixels i, j are

considered and we define the smoothing penalty simi-

larly to [20,27]:

ψsm(ci, cj) = λ
(
1{ci 6=cj}

)
exp

(
−γ||Ii − Ij ||2

)
(8)

where 1{ci 6=cj} is 0 when ci = cj and 1 otherwise; Ii
and Ij are the RGB color values for pixels pi and pj
and γ = (2〈||Ii − Ij ||2〉)−1, where 〈·〉 denotes the aver-

age over the training images as suggested by [24]. The

constant λ controls the amount of smoothing; here, we

set λ = 16. Inference is performed using α-expansion [2,

17]. This was the setup used in our original paper [29]

and works quite well but does exhibit some metrication

artifacts [1]: namely, the boundaries between different

classes tend to step between vertical, horizontal, and

45-degree angles as they attempt to follow the graph

structure (Figure 4).

To produce a smoothed labeling without the metri-

cation artifacts, we have experimented with an alterna-

tive fully connected, or dense, CRF of Krahenbuhl and

Koltun [18]. For this setup, we use the contrast-sensitive

two-kernel potentials from [18]:

ψsm(ci, cj) = 1{ci 6=cj}

(
k(1)(pi,pj) + k(2)(pi,pj)

)
,

k(1)(pi,pj) = w(1)exp

(
−||pi − pj ||2

2θ2α
− ||Ii − Ij ||2

2θ2β

)
,

k(2)(pi,pj) = w(2)exp

(
−||pi − pj ||2

2θ2γ

)
,

(9)

where ||pi−pj || is the Euclidean distance between pixel

locations pi and pj . We find the values of the param-

eters by grid search on the training set of the LMO

dataset: w(1) = w(2) = 4, θα = 15, θβ = 20 and

θγ = 3 for all experiments. To perform CRF inference

on the fully connected graph, we use the efficient mes-

sage passing code of [18], which is at least as fast as the

α-expansion inference of Boykov and Kolmogorov [2,

17].
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Fig. 4 Qualitative comparison of 8-connected and dense pairwise potentials in our CRF. Notice how the edges produced
by 8-connected CRF step between vertical, horizontal, and 45-degree angles as they attempt to follow the graph structure,
especially in the top photo. This phenomenon is known as metrication and is avoided by the dense CRF of [18]. Unfortunately
in our experiments we couldn’t find a set of parameters that could always outperform the 8-connected CRF’s average per-class
rate. This is likely due the the tendency of the dense CRF to smooth away small objects like the license plate and tail light of
the right car.

4 Instance-Level Inference

We now wish to find a set of object instance masks and

their occlusion ordering that can provide a richer inter-

pretation of the scene (recall Figure 2). We begin by

generating a set of candidate instance masks based on

per-exemplar detections and two variants of our pixel

labeling (Section 4.1). Each candidate receives a score

indicating its “quality” or degree of agreement with the

pixel labeling (Section 4.2). We then solve a quadratic

integer program to select a subset of instances that pro-

duce the highest total score, while maintaining valid

pairwise overlap relationships (Section 4.3). Next, we

use a simple graph-based algorithm to recover a depth

or occlusion ordering for the selected instances (Section

4.4) and define an object potential that augments the

CRF model of eq. (5) to recompute a pixel labeling that

better agrees with the instance-level image interpreta-

tion (Section 4.5). Finally, we alternate between using

the updated pixel labeling to further refine the instance

inference and vice versa.

4.1 Candidate Instance Generation

This section explains how we generate object instance

hypotheses using the pixel-level parsing framework of

Section 3. First, it is worth pointing out the different

nature of hypotheses for “thing” and “stuff” classes. For

“things” like cars, people, and fire hydrants, instances

are discrete and well-defined. It is highly desirable to

correctly separate multiple “thing” instances even when

(or especially when) they are close together or overlap-

ping. On the other hand, for “stuff” classes such as

buildingcar

Fig. 5 Candidate instance masks obtained from per-
exemplar detections. There are many good “car” masks but
no good “building” ones. Accordingly, we take the per-
exemplar masks as our candidate “thing” instances but use a
different procedure for “stuff” (see text).

buliding, roads, trees, and sky, the notion of instances

is a lot looser. In some cases, it may be possible to iden-

tify separate instances of buildings and trees, but most

of the time we are content to treat areas occupied by

these classes as undifferentiated masses. Accordingly,

we manually separate all classes in our datasets into

“things” and “stuff” and use different procedures to

generate candidates for each (the full split is available

on our project website).

For “things,” we get candidates from per-exemplar

masks transferred during the computation of the detector-

based data term (Section 3.2). As shown in Figure 5,

these masks make fairly good candidates for “things”

such as cars, but for “stuff” such as buildings, they tend

to be overly fragmented and poorly localized.

To get “stuff” hypotheses that better fit the bound-

aries in the image, one might think of simply taking the

connected components of the corresponding class labels

from the initial pixel-level parse. However, the resulting
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building
tree
sky

Test Image Exclusive SVM Non-exclusive SVM

Fig. 6 “Stuff” parsing using both exclusive and non-exclusive
SVMs. The exclusive SVM generates good “tree” candidates,
while the non-exclusive one generates a “building” candidate
without holes. The connected components of both parses give
us our “stuff” hypotheses (see text).

masks may have artifacts due to occlusions. For exam-

ple, a scene may have a building with trees in front

of it (Figure 6), and if we simply pick out the “build-

ing” pixels from the initial parse, we will end up with

a hypothesis that has tree-shaped holes in it. Instead,

we would like to compute a layered representation of

the image reflecting the fact that both “building” and

“tree” coexist in the same location, with the latter be-

ing in front of the former. Fortunately, our datasets

come from LabelMe where the ground truth consists of

overlapping object polygons, and it allows us to learn

about such relationships [25].

The initial pixel-level parse is determined primarily

by the combination SVM data term ESVM (Section 3.3).

By default, the combination SVM is trained to assign

to each pixel only the visible or front-most object la-

bel. For example, if a training pixel is contained within

“headlight,” “car,” and “building” ground-truth poly-

gons, it is used as training data only for the front-most

“headlight” label. To generate better “stuff” hypothe-

ses, we want a high response to background (occluded)

classes as well. So we also train a second non-exclusive

combination SVM where each pixel is considered a pos-

itive example of every ground-truth polygon that con-

tains it. We denote the output of this combination SVM

as ENXSVM(pi, ci) and the output of the original exclu-

sive one as EXSVM(pi, ci). A comparison of the two is

shown in Figure 7.

We produce two pixel-level parses using EXSVM(pi, ci)

and ENXSVM(pi, ci) in the unary of eq. (6), respec-

tively, and restricting the labels to “stuff.” The con-

nected components of these parses give us our candidate

“stuff” masks. Taking out the “things” ensures that

they do not occlude the “stuff” hypotheses. The exclu-

sive parse favors the foreground “stuff” objects, while

the non-exclusive one favors the larger background “stuff”

objects as the smaller occluding or attached objects

tend to have equal or lower SVM responses and hence

get smoothed away.

The “stuff” hypotheses from the two parses are slightly

redundant – in particular, in the example of Figure 6 we

Query & Ground Truth

Non−Exclusive SVM

Exclusive SVM Parsing Result
car
road
building
tree
window
plant
door
fence
wheel
steps
sidewalk
tail light
windshield

Fig. 7 Exclusive vs. non-exclusive SVM output. The exclu-
sive SVM has a very low response for areas of the car that
have attached objects, like the wheels. This would penalize
candidate object masks that include the wheel pixels. By con-
trast, the non-exclusive SVM has a high response for all parts
of the car, and the resulting pixel labeling favors classes with
larger area, which typically correspond to background or oc-
cluded classes.

get two “building” hypotheses, one with a hole where it

is occluded by a tree and one without. In the next sec-

tion, we will describe a scoring scheme that will enable

us to select the appropriate combination of hypotheses

– the building with no hole and the tree in front.

4.2 Instance Scores and Overlap Constraints

In order to perform instance-level inference, we need to

assign a score to each candidate instance indicating its

“quality” or degree of agreement with the initial pixel

labeling (with a higher score indicating a better “qual-

ity”), as well as to define overlap constraints between

pairs of instances. These components will be defined in

the current section.

We have found a unified scoring scheme that works

equally well for for both “things” and “stuff.” First,

given instance m with class label cm and segmentation

mask Om, we define an unweighted score ŝm as the sum

of (shifted) non-exclusive SVM scores for its class label

and every pixel pi inside its segmentation mask:

ŝm =
∑

pi∈Om

(1 + ENXSVM(pi, cm)) . (10)

Since any object with a negative score will be rejected

by the optimization framework of Section 4.3, we move

the effective decision boundary of the SVM to the neg-

ative margin so that as many reasonable candidate ob-

jects are considered as possible. It is important to use

the non-exclusive SVM because we do not want to pe-

nalize an instance due to other classes that may occlude

it. In the example of Figure 7, if we were to use the ex-

clusive SVM to score a candidate car mask, the wheel

regions would be penalized and a worse mask with-

out the wheels would likely be preferred. Note, how-

ever, that we will still need the exclusive SVM to per-

form pixel-level inference (Section 4.5), since the non-
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exclusive SVM tends to prefer the larger and more com-

mon classes as explained earlier.

So far, the scores defined by eq. (10) depend only

on the SVM data term, which is computed once in the

beginning and never modified. To allow the selected in-

stances to iteratively modify the pixel labeling and vice

versa, the score also needs to depend on the current la-

beling. To this end, we weight each instance score ŝm
by the percentage of pixels in the respective mask Om
that have agreement with the current pixel labels c. At

each pixel pi inside the object mask, this agreement

is given by Vp(cm, ci), a flag whose value is 1 if the in-

stance label cm can appear behind the pixel label ci and

0 otherwise. For example, a candidate “car” instance is

in agreement with “headlight,” “window,” and “license

plate” pixels because all these are often seen in front of

“car.” On the other hand, it is not in agreement with

“building” or “road” pixels because cars occur in front

of these classes. The matrix of Vp values is learned by

tabulating label co-occurrences in the training dataset,

normalizing each count by the total count for the less

common class, and then thresholding with a very low

value (0.001). Our final weighted instance scores are

given by

sm = wmŝm , where wm =
1

|Om|
∑

pi∈Om

Vp(cm, ci) .

(11)

Our instance-level inference (Section 4.3) will at-

tempt to select a combination of instance hypotheses

that maximize the total score while requiring that ev-

ery pair of selected objects have a valid overlap relation-

ship. Now we explain how this relationship is defined.

For any two instances with classes cm and cn and masks

Om and On, we first compute an overlap score

osmn =
|Om ∩On|

min(|Om|, |On|)
. (12)

Note that we define our overlap score this way instead

of the more standard intersection-over-union (I/U) in

order to have a consistent score for attached objects. If

we use I/U, a large window hypothesis partially over-

lapping with a building can have the same score as a

small window hypothesis with full overlap.

Next, we encode the validity of the overlap relation-

ship between m and n using the flag Vo(m,n), which

is defined to be 1 if and only if it is possible for cm to

appear either behind or in front of cn with an overlap

score similar to osmn, as determined by dataset statis-

tics. It is important to make Vo depend on the over-

lap score, in addition to the pair of labels, because we

want to allow only certain kinds of overlap for certain

label pairs. For example, cars must overlap other cars

by 50% or less, while headlights must overlap cars by

90% or more. For all pairs of labels (c, c′), we use the

training set to build a histogram H(c, c′, os) giving the

probability for c to be behind c′ with overlap score of

os (quantized into ten bins). Given instances m and n

from the test image, we then determine whether their

relationship is valid by thresholding the maximum of

the histogram entries corresponding to both orderings:

Vo(m,n) = 1[max(H(cm,cn,osmn),H(cn,cm,osmn))>t] . (13)

Again we set a fairly conservative threshold of t =

0.001.

4.3 Instance-level Inference

This section shows how to select a subset of candidate

instances that has the highest total score while main-

taining valid overlap relationships. Let x denote a bi-

nary vector each of whose entries xm indicates whether

the mth candidate should be selected as part of our

scene interpretation. We infer x by maximizing∑
m

smxm −
∑
n 6=m

1{cm=cn}smnxmxn

s.t. ∀(xm = 1, xn = 1, n 6= m) Vo(m,n) = 1 ,

(14)

where cm and cn are the class labels of m and n, sm is

the instance score from eq. (11), and smn is is defined

for any two overlapping objects of the same class in the

same manner as sm, but over the intersection of the re-

spective object masks. By adding the smn term for any

two selected objects of the same class, we avoid double-

counting scores and ensure that any selected instance

has sufficient evidence outside of regions overlapping

with other instances. Without this term, we tend to

get additional incorrect instances selected around the

borders of correct ones.

Eq. (14) can be rearranged into an integer quadratic

program:

minimize M(x) = xTQx− sx s.t. Ax < b , (15)

where s is a vector of all object scores sm andQ(m,n) =

1{cm=cn}smn. The constraint matrix A is constructed

by adding a row for each zero entry Vo(m,n) (that is,

each pair of objects with invalid overlap). This row con-

sists of all zeros except for elements m and n which are

set to 1. Finally, b is a vector of ones with the same

number of rows as A. With this encoding, we cannot

select two candidate objects with invalid overlap, as it

would result in a row of Ax being larger than 1.
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Greedy CPlex
window
building
car
crosswalk
person
road
sidewalk
sky

car
building
license plate
manhole
road
sky
taxi
wheel
windshield

Fig. 8 A comparison of our two instance-level inference
methods. In the first row, greedy inference combines six win-
dows into one. In the second row, quadratic programming
over-segments the foreground car, but greedy inference misses
the two occluded cars in the background.

To infer the labels x we adopt two methods. The

first is greedy inference that works by adding one can-

didate object at a time. In each round, it searches for

the object whose addition will produce the lowest en-

ergy M(x) (eq. 15) while still respecting all overlap

constraints. This continues until each remaining ob-

ject either increases the energy or violates a constraint.

This method is very fast and works well. The second

method is to use the integer quadratic programming

solver CPlex [14]. It consistently gives object configu-

rations with lower energies, but is much slower than

greedy inference and cannot handle as many candidate

objects. Figure 8 compares the two solutions on frag-

ments of two test images; all the subsequent figures will

show only the output of CPlex as it achieves a slightly

higher accuracy overall (see Section 5 for the experi-

mental evaluation). Finally, note that prior to running

the instance-level inference, we reject any instance less

than 10% of whose pixels have the same label as the

current pixel parse c.

4.4 Occlusion Ordering

The instances selected by the above optimization pro-

cess are guaranteed to have valid overlap relationships,

but for each overlapping pair we do not yet know which

one occludes the other. To determine this ordering, we

build a graph with a node for each selected mask Om.

For each pair of overlapping masks Om and On we add a

pair of edges: one from m to n with edge weight equal

to H(cm, cn, osmn) and one from n to m with weight

H(cn, cm, osmn). These respective edges represent the

situation that object m is behind object n and vice

versa. For objects from the same class we weight the

edges by the object size so that larger objects are fa-

vored to be in front of smaller ones.

To infer the occlusion order we now need to remove

one edge from each pair to generate a directed acyclic

graph with the highest edge weights possible. To do so,

we remove the edge with the smaller weight for each

pair, and check whether there are cycles in the resulting

graph. If there are, we pick a random cycle and swap

the edge pair with the smallest difference in weight. We

continue this until there are no more cycles. Finally, we

perform a topological sort of the directed acyclic graph

to assign a depth plane to each object, which is useful

for visualization, like in Figure 2(e).

4.5 Pixel Label Inference with Object Potentials

Once we have the selected object hypotheses and their

occlusion ordering, we can close the loop between instance-

level and pixel-level inference. Specifically, we obtain an

updated pixel-level labeling by augmenting the CRF of

eq. (5) with object potentials ψo:

E(c) =
∑
i

ψu(pi, ci)︸ ︷︷ ︸
unary

+
∑
i

ψo(pi, ci,x)︸ ︷︷ ︸
object potential

+α
∑
i

ψsp(pi, ci)︸ ︷︷ ︸
spatial prior

+
∑

(i,j)∈N

ψsm(ci, cj)︸ ︷︷ ︸
smoothing

.
(16)

The object potential ψo(pi, ci) is set to 0 if no se-

lected instance mask contains pi, to − log(0.5 + β) if

the front-most instance containing pi is of class ci, and

to − log(0.5−β) otherwise. The constant β determines

the amount by which the object potentials modulate

the unaries, and it is set to 0.1 in our implementation.

This formulation is similar to that of [16].

We alternate between inferring object instances (eq.

15) and pixel labels (eq. 16) until neither one changes.

This process tends to converge in three rounds and after

the first round the results are already close to final.

Figure 9 shows three rounds of alternating inference

for a fairly complex scene.

5 Evaluation

We evaluate our pixel-level and instance-level inference

approaches on two subsets of LabelMe [26]. The first

dataset, LMO [20], consists of outdoor scenes. It has

2,488 training images, 200 test images, and 33 labels.

For this dataset, we use retrieval set size of 200. Our

second dataset, LM+SUN [30], was collected from the

SUN dataset [31] and LabelMe [26]. It contains 45,676

images (21,182 indoor and 24,494 outdoor) and 232 la-

bels. We use the split of [30], which consists of 45,176
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Iteration 1 Iteration 2 Iteration 3Query & Ground Truth

0.20 / 0.19
road

48.3%

0.20 / 0.19

53.0%

0.21 / 0.19

53.4%

building motorbike tree sky car trash can sidewalk bus path

Fig. 9 Output of pixel-level and instance-level inference at each iteration. For pixel labeling (top row) we show the per-pixel
rate underneath each image and for instance predictions (bottom row) we show Object P/R (Section 5). From iteration 1 to
2, we correct the pixel labeling of the trashcan on the right; from iteration 2 to 3 minor details in the background get refined.
Based on the initial pixel labeling, two bus instances get predicted, and these unfortunately stay.

training and 500 test images. Since this is a much larger

dataset, we set the retrieval set size to 800.

5.1 Pixel-Level Inference Evaluation

In this section, we evaluate our hybrid region- and detector-

based pixel labeling approach (Section 3). As in our

previous work [30], we evaluate pixel labeling accuracy

by reporting the overall per-pixel rate (percent of test

set pixels correctly labeled) and the average of per-class

rates. The two measures complement each other, as the

former one is dominated by the more common “stuff”

classes, while the latter one is dominated by the rarer

“thing” classes.

We begin by systematically examining the impact of

individual implementation components, including region-

and detector-based data terms, per-exemplar detectors

(exemplar-SVM vs. LDA), different kernels for the com-

bination SVM, and variants of the CRF objective func-

tion.

First, one may wonder whether the power of our

approach truly lies in combining the two types of cues,

or whether most of our performance gain comes from

the extra layers of combination SVM (Section 3.3) and

CRF inference (Section 3.4). Table 1 shows the perfor-

mance of various combinations of region- and detector-

based data terms with and without training of SVMs

on top of them, with and without CRF smoothing. The

region-based data term obtains higher per-pixel accu-

racy than the detector-based one on both datasets, and

higher per-class accuracy on LMO. On the LM+SUN

dataset, which has the largest number of rare “thing”

classes, the detector-based data term actually obtains

higher per-class accuracy than the region-based one.

While the combination SVM can sometimes improve

performance when applied to the individual data terms,

applying it to their combination gives by far the biggest

and most consistent gains. CRF inference on top of any

data term further raises the per-pixel rate, but often
lowers the per-class rate by smoothing away some of

the smaller objects (this is consistent with our earlier

observations [30]).

Because part of our motivation for incorporating

detectors is to improve performance on the “thing”

classes, we want to know what will happen if we train

detectors only on them – if detectors are completely in-

appropriate for “stuff” classes, then this strategy may

improve accuracy, not to mention speed up the sys-

tem considerably. The “Region + Thing” section of Ta-

ble 1 shows the performance of the combination SVM

trained on the full region-based data term and the sub-

set of the detector-based data term corresponding only

to “things” (the “things” vs. “stuff” splits are specified

manually and are available on our results website). In-

terestingly, the results for this setup are weaker than

those of the full combined system. Thus, even the weak

and noisy “stuff” detector responses still provide useful

information to the pixel-level inference task, though for

instance-level inference, we could not derive any use-
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LMO LM+SUN
Per-Pixel Per-Class Per-Pixel Per-Class

Detector ML 65.1 25.8 33.0 14.1
Detector SVM 62.5 25.4 46.1 12.0
Detector SVM CRF 71.1 26.7 52.5 11.3
Region ML 74.1 30.2 51.5 7.5
Region SVM 75.0 35.9 56.3 6.7
Region SVM CRF 77.7 32.8 58.3 5.9
Region + Thing SVM 74.4 36.9 58.5 14.1
Region + Thing SVM CRF 77.5 35.7 60.0 12.9
Region + Detector SVM 75.6 41.1 59.6 15.5

Region + Detector SVM CRF 78.6 39.2 61.4 15.2

Table 1 Comparison of different data terms in the pixel labeling system of Section 3. All results here are obtained using
exemplar-SVM detectors, combination SVMs with the approximate RBF embedding, and 8-connected CRFs. “Detector ML”
and “Region ML” simply assign to each pixel pi the labels c that maximize ER(pi, c) and ED(pi, c), respectively. “Detector
SVM” and “Region SVM” obtain the ESVM score by training one-vs-all SVMs on top of ER and ED individually (instead of
concatenating them). “Region + Thing SVM” trains the combination SVM on the full ER concatenated with the subset of
ED corresponding to only the “thing” classes. Finally, “Region + Detector SVM” trains the SVM on the full concatenation of
ER and ED, as described in Section 3.3.

0%
20%
40%
60%
80%
100%

Region Detector Combined

Fig. 10 Classification rates of individual classes (ordered from most to least frequent) on the LMO dataset for region-based,
detector-based, and combined parsing. All results use approximate RBF SVM and 8-connected CRF smoothing.

0%
20%
40%
60%
80%

100%
Region Detector Combined

...

Fig. 11 Classification rates of the most common individual classes (ordered from most to least frequent) on the LM+SUN
dataset for region-based, detector-based, and combined parsing. All results use approximate RBF SVM and 8-connected CRF
smoothing.

ful candidates from the individual “stuff” detections,

as discussed in Section 4.1.

Figures 10 and 11 show the per-class rates of our

system on the most common classes in the LMO and

LM+SUN datasets for region-based, detector-based, and

combined parsing. We can see that adding detectors sig-

nificantly improves many “thing” classes (including car,

sign, and balcony), but also some “stuff” classes (road,

sea, sidewalk, fence).

Next, Table 2 looks at the effect of replacing the

exemplar-SVM detector training framework by the faster

LDA-based one. We can see that the LDA detectors are

fairly comparable to the exemplar-SVMs in terms of ac-

curacy, which is promising since they reduce the train-

ing time by a factor of a hundred (see Section 5.3).

The most significant disadvantage of the LDA detec-

tors seems to be on the rare classes, especially on the

LM+SUN dataset, where they miss many of the less

common classes the SVM based per-exemplar detectors

do get. This is likely because the covariance computed

across the full training set is a reasonable approxima-

tion for the common classes but not for the rare ones.

In all subsequent experiments, we stick with exemplar-

SVMs due to their higher average per-class accuracy on

the LM+SUN dataset.
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LMO LM+Sun
Per-Pixel Per-Class Per-Pixel Per-Class

Linear 75.4 40.0 57.2 16.6
Linear CRF 77.5 40.2 59.5 15.9
Approx. RBF 75.6 41.1 59.6 15.5
Approx. RBF CRF 78.6 39.2 61.4 15.2
Exact RBF 75.4 41.6 N/A N/A
Exact RBF CRF 77.6 42.0 N/A N/A

Table 3 Comparison of different kernels used to train the combination SVM. All results here are obtained using exemplar-
SVMs and 8-connected CRF. The RBF kernel has a slight edge over the linear kernel, and the approximate RBF embedding
of [23] has comparable performance to the exact nonlinear RBF. Note that training the exact RBF on the largest LM+SUN
dataset was computationally infeasible.

LMO LM+Sun
E-SVM 75.6 (41.1) 59.6 (15.5)
E-SVM CRF 78.6 (39.2) 61.4 (15.2)
LDA 77.1 (41.5) 59.1 (14.3)
LDA CRF 78.4 (40.9) 59.7 (14.3)

Table 2 Comparison of exemplar-SVM and LDA-based de-
tectors. The first number is the per-pixel rate and the sec-
ond number in parentheses is the per-class rate. All results
are for the full combined region- and detector-based system,
with the approximate RBF used for the combination SVM.
“E-SVM” (resp. “LDA”) is the version of the system using
the exemplar-SVM (resp. LDA) detectors before smoothing
with the CRF. Also shown are results with the 8-connected
CRF. Notice that for the LMO dataset the LDA detectors
do slightly better, but on LM+SUN they are slightly worse.
Interestingly, on both datasets smoothing with the CRF has
less of an effect on the LDA-based detector terms likely be-
cause they are already smooth.

Table 3 compares different kernels for the combina-

tion SVM: linear kernel, approximate RBF (using the

embedding of [23]), and exact nonlinear RBF. The lin-
ear SVM may be a better choice if speed is a concern

(see Section 5.3 for a discussion of running times), but

the approximate and exact RBF are able to boost per-

formance by 1-2%. Also note that the approximate RBF

embedding obtains similar results to the exact nonlinear

RBF. All subsequent experiments of Section 5.1 will re-

port only the SVM results with the approximate RBF,

though in the instance inference experiments of Section

5.2 we will go with the linear one for the sake of speed.

The last implementation aspect we examine here

is CRF smoothing (Section 3.4). Table 4 compares the

performance of 8-connected and dense CRFs. While the

dense CRF results are generally more visually pleasing

since they do not have the metrication artifacts the 8-

connected results do, the dense CRF seems to more

easily smooth over small objects. This was illustrated

in Figure 4, where the dense CRF smoothed away the

smaller license plate when the 8-connected CRF did

not. Table 5 shows the effect of the spatial prior. It

LMO LM+Sun
Combined SVM 75.6 (41.1) 59.6 (15.5)
Combined SVM CRF 8-conn 78.6 (39.2) 61.4 (15.2)
Combined SVM Dense CRF 78.0 (39.8) 61.4 (14.5)

Table 4 Comparison of performance of 8-connected and
dense CRF formulations. The first number is the per-pixel
rate and the second one in parentheses is the average per-class
rate. “Combined SVM” is the result of the region+detector
SVM data term before smoothing with the CRF. The dense
CRF actually does slightly worse on the LM+SUN dataset
and about the same on the LMO dataset. We’ve found that
often the dense CRF would over smooth small objects even
when the unary had strong support for the object.

LMO LM+Sun
Combined SVM 75.6 (41.1) 59.6 (15.5)
Combined SVM CRF 78.6 (39.2) 61.4 (15.2)
Combined SVM + SP 76.2 (41.0) 60.4 (15.5)
Combined SVM + SP CRF 78.6 (39.4) 62.0 (15.4)

Table 5 Comparison of performance with and without the
spatial prior. “Combined SVM” is the result of the combined
SVM data term before smoothing with the CRF. “Combined
SVM + SP” is the same but with the spatial prior term added.
Also shown are results with the 8-connected CRF.

tends to produce smoother results without hurting the

average per-class rate.

Table 6 compares our combined pixel-level parsing

system to a number of state-of-the-art approaches on

the LMO dataset. We outperform them, in many cases

beating the average per-class rate by up to 10% while

maintaining or exceeding the per-pixel rates. The one

exception is the system of Farabet et al. [7] when tuned

for balanced per-class rates, but their per-pixel rate is

much lower than ours in this case. When their system is

tuned to a per-pixel rate similar to ours, their average

per-class rate drops significantly below ours.

On LM+SUN, which has an order of magnitude

more images and labels than LMO, the only previously

reported results are from our earlier region-based sys-

tem [30]. As Table 7 shows, by augmenting the region-

based term with the new detector-based data term, we
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fire hydrant 249 / 3  93.7% motorbike 551 / 17  83.7% flower 1759 / 27  63.7% license plate 852 / 26  59.5%

manhole 390 / 11  50.8% faucet 425 / 8  46.4% bicycle 692 / 21  34.3% coffee maker 252 / 6  26.2%

boat 1311 / 14  7.6% torso 2357 / 36  30.1% vase 780 / 16  16.5% lamp 2055 / 28  39.5%

screen 1752 / 35  22.9% van 840 / 26  21.7% chair 7762 / 143  13.7% sofa 1188 / 17  30.8%

Fig. 12 Examples of “thing” classes on LM+SUN. For each class we show a crop of an image, the combination SVM output,
and the smoothed final result. The caption for each class shows: (# of training instances of that class) / (# of test instances)
(per-pixel rate on the test set)%. Best viewed in color.

LMO
Ours: Combined CRF 78.6 (39.4)
Tighe and Lazebnik [30] 77.0 (30.1)
Liu et al. [20] 76.7 (N/A)
Farabet et al. [7] 78.5 (29.6)
Farabet et al. [7] balanced 74.2 (46.0)
Eigen and Fergus [5] 77.1 (32.5)
Myeong et al. [22] 77.1 (32.3)

Table 6 Comparison to state of the art on the LMO dataset.
The “Combined CRF” result for our system are obtained with
the following settings: exemplar-SVM detectors, approximate
RBF SVM, 8-connected CRF and a spatial prior (see last line
of Table 5).

LM+SUN
Ours: Combined CRF 62.0 (15.4)

Outdoor Images 66.0 (15.5)
Indoor Images 46.9 (12.4)

Tighe and Lazebnik [30] 54.9 (7.1)
Outdoor Images 60.8 (7.7)
Indoor Images 32.1 (4.8)

Table 7 Comparison to [30] on the LM+SUN dataset with
results broken down by outdoor and indoor test images. Our
“Combined CRF” result is obtained with exemplar-SVM de-
tectors, approximate RBF SVM, 8-connected CRF and a spa-
tial prior (see last line of Table 5).

are able to raise the per-pixel rate from 54.9% to 62.0%

and the per-class rate from 7.1% to 15.4%.

Finally, Figure 12 gives a close-up look at our per-

formance on many small object categories, and Figures

13 and 14 show several parsing examples on LMO and

LM+SUN. Later in Section 5.2 we will show the output

of our layered instance inference on the same examples,

and it will be interesting to see, for example, whether

we will be able to separate the blob of “car” labels from

Figure 13(b) or the blob of “people” labels from Figure

13(c) into individual instances.

5.2 Instance-Level Inference Evaluation

Now we move on to evaluating the instance-level infer-

ence method of Section 4. For pixel-level CRF infer-
ence with object potentials (eq. 16), this section uses

the Approximate RBF SVM data terms, 8-connected

CRF smoothing, and a spatial prior. Just as in Section

5.1, we evaluate the accuracy of pixel-level labeling by

reporting overall and average per-class pixel rates. Ad-

ditionally, in order to assess the quality of inferred ob-

ject instances and their depth ordering, we introduce

two additional performance measures.

The first, referred to as Object P/R, measures pre-

cision and recall of predicted instances. We define a

correctly predicted instance to be one that has an inter-

section over union (I/U) score greater than 0.5 with at

least one ground truth polygon of the same class. If two

predicted objects both have an I/U score over 0.5 with

the same ground truth polygon, only one is considered

correct. This is similar to the definition used in PAS-

CAL [6] but relies on object masks rather than bound-

ing boxes. Then precision is computed as the number

of correctly predicted objects divided by the total num-

ber of predicted objects, while recall is the number of
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Query & Ground Truth

(a) streetlight car

Region/Detector/Combined Dataterms

staircase

82.7%

Initial Region/Detector

90.8% 93.5%

Combined System
streetlight
car
staircase
sidewalk
building
sky
road
tree
plant
sign
person

(b) road car building

81.8%

77.3% 85.5%

road
car
building
sky
sidewalk
mountain
person
window
awning

(c) person car building

85.4%

72.4% 88.0%

person
car
building
sky
road
mountain
sidewalk
fence
plant

(d) streetlight bridge sign

94.7%

91.9% 91.3%

streetlight
bridge
sign
sky
road
tree
car
fence
building

Fig. 13 Example results on the LMO dataset (best viewed in color). First column: query image (top) and ground truth
(bottom). Second through fourth columns: region-based data term (top), detector-based data term (middle), and SVM com-
bination (bottom) for three selected class labels. Fifth column: region-based parsing results (top) and detector-based parsing
results (bottom) without SVM or CRF smoothing. Right-most column: smoothed combined output. In all example images the
combined system does well on cars as well as the “stuff” classes. In (a) the system correctly labels the plants and the detectors
find the street light and stairs, which our instance labeling is able to take advantage of in Figure 16. In (c) the system finds
the people and in (d) the street light is correctly labeled.
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Query & Ground Truth

(a) taxi car

Region/Detector/Combined Dataterms

building

67.2%

Region

50.8% 92.5%

Combined
taxi
car
building
road
sky
fence
sidewalk
streetlight
truck
person
mailbox
van
window
trash can
manhole
traffic light

(b) car window wheel

65.1%

26.5% 75.6%

car
window
wheel
building
road
tree
sidewalk
bicycle
plant
headlight
parking meter
tail light
door
fence
steps
windshield
handle

(c) bed picture wall

19.4%

61.5% 74.0%

bed
picture
wall
sea
mountain
curtain
window
sky
ceiling
painting
floor
pillow

(d) toilet plate wall

30.9%

24.8% 69.4%

toilet
plate
wall
floor
mirror
person
pot
glass
cup
tree
painting
counter top
towel
trash can

Fig. 14 Example results on the LM+SUN dataset (best viewed in color). First column: query image (top) and ground
truth (bottom). Second through fourth columns: region-based data term (top), detector-based data term (middle), and SVM
combination (bottom) for three selected class labels. Fifth column: region-based parsing results (top) and detector-based
parsing results (bottom) without SVM or CRF smoothing. Right-most column: smoothed combined output. The example in
(a) has strong detector responses for both “car” and “taxi,” and the combination SVM suppresses the former in favor of the
latter. In (b), the system correctly identifies the wheels of the cars and the headlight of the left car. In (c), the detectors
correctly identify the wall and most of the bed. Note that the region-based parser alone mislabels most of the bed as “sea”; the
detector-based parser does much better but still mislabels part of the bed as “mountain.” In this example, the detector-based
parser also finds two pictures and a lamp that do not survive in the final output. In (d), our system successfully finds the
toilet. Note that both the region- and detector-based data terms assign very high likelihood of “plate” to the toilet bowl, but
the combination SVM suppresses “plate” in favor of “toilet.”
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LMO
Instances Object P/R Pixel P/R Pixel Parse

Initial Pixel Parse 78.6 (39.4)

NMS Detector 13734 3.1 / 21.4 58.0 / 50.5 77.8 (39.1)
NMS SVM 3236 11.8 / 18.4 75.7 / 62.0 78.1 (38.8)
Greedy 912 44.4 / 20.0 75.4 / 71.8 78.4 (38.5)
CPlex QP 990 42.8 / 21.1 75.4 / 71.9 78.5 (38.7)

LM+SUN
Initial Pixel Parse 62.0 (15.4)
NMS Detector 146101 0.8 / 12.2 27.8 / 25.1 60.9 (15.1)
NMS SVM 12839 9.3 / 12.9 53.3 / 52.8 61.8 (15.9)
Greedy 4902 24.7 / 13.1 60.8 / 59.8 62.2 (16.1)
CPlex QP 5425 22.5 / 13.4 61.0 / 60.0 62.3 (16.3)

Table 8 Comparison of instance-level inference baselines (NMS Detector, NMS SVM) and our proposed quadratic program-
ming inference (Greedy, CPlex QP). The “Instances” column lists the total number of instances predicted by each method on
the test set. Below, the accuracies for the four instance-level inference methods are shown after three iterations of alternating
pixel- and instance-level inference. The “Pixel Parse” column reports the per-pixel and average per-class rates for pixel-level
CRF inference, which uses approximate RBF SVM combination potentials, 8-connected CRF, a spatial prior, and object poten-
tials derived from the respective instance inference methods. “Initial Pixel Parse” is the result of CRF inference without object
potentials and matches the values from Tables 6 and 7. See text for definition of the Object P/R and Pixel P/R measures.

correctly predicted objects divided by the number of

ground truth objects.

The second measure, Pixel P/R, evaluates the pixel

labeling generated by compositing the predicted instances

back to front, with any pixels not contained within any

instance remaining unlabeled. Precision for this mea-

sure is the number of correct pixel labels divided by

the total number of predicted pixels, and recall is the

number of correct pixel labels divided by the total num-

ber of pixels in the test images. Note that Pixel P/R is

affected by occlusion order inference, while Object P/R

is not. Also, Pixel P/R tells us how well our instance

predictions can produce a pixel parse without relying

on CRF unaries or smoothing.

Since there are no existing methods capable of infer-

ring object masks and occlusion ordering for hundreds

of classes, we have implemented two baselines to com-

pare against. Both are used to replace the instance-

level inference of Section 4.3; all the other steps stay

the same, including the estimation of occlusion ordering

(Section 4.4), which is needed to compute Pixel P/R.

Our first baseline, named NMS Detector, minimizes

the reliance on the pixel parsing when inferring objects.

It takes per-exemplar detection masks as candidate in-

stances for both “things” and “stuff” and scores each

candidate with the detector responses. To prevent the

output from being overrun by false positives, we re-

strict the candidate instances to classes that appear in

the pixel labeling, but this is the only way in which the

pixel labeling is used. Simple greedy non-maximal sup-

pression is performed on each class individually with a

threshold of 50% overlap in the same manner as [8] to

infer the final objects. Table 8 shows that this setup pro-

duces far more object instance predictions and thus has

a far lower object precision. The object recall is fairly

high but if we look at the Pixel P/R scores we can see

that it fails to produce accurate pixel predictions.

For our second baseline, named NMS SVM, we use

the same candidate objects as in Section 4.1 and score

them as in Section 4.2. However, instead of the inter-

class overlap constraints defined in Section 4.2 we again

use greedy non-maximal suppression. Thus, when com-

pared to our proposed inference method, this baseline

shows the effectiveness of overlap constraints. As can

be seen in Table 8, NMS SVM produces two to three

times the number of instance predictions over our pro-

posed method, and has lower Object P/R and Pixel

P/R performance.

In addition to the two baselines, Table 8 also com-

pares greedy inference and the CPlex solver [14] for

solving the objective function of eq. (15). The greedy in-

ference tends to infer fewer object instances than CPlex.

Concretely, on the LM+SUN dataset, both start with

an average of just over 300 candidate instances per test

image, out of which greedy selects about 11 instances

while CPlex selects about 12. Greedy inference has a

higher object precision, but it does miss some objects

and thus has a lower object recall.

Here we can also compare our results to that of Isola

et al. [15] who also predict object instances by trans-

fering ground truth masks from the training set. They

report a per-pixel performance of 70.0% on the LMO

dataset. If we just use our predicted objects to produce

a pixel labeling we would achieve a pixel accuracy of

71.9% (the recall from our Pixel P/R measure) and our

pixel parsing result has a per-pixel accuracy of 78.5%,

clearly outperforming Isola et al. [15].

Table 9 shows the effect of alternating pixel- and

instance-level inference. Somewhat disappointingly, instance-

level inference does not give us any significant gains in
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LMO LM+SUN
Iteration 1 2 3 1 2 3

Object P/R 43.9 / 20.1 44.1 / 20.1 44.4 / 20.0 24.2 / 13.1 24.4 / 13.1 24.7 / 13.1
Greedy: Pixel P/R 75.6 / 71.8 75.4 / 71.8 75.4 / 71.8 60.7 / 59.7 60.8 / 59.7 60.8 / 59.8

Pixel Parse 78.6 (39.4) 78.5 (38.7) 78.4 (38.5) 62.0 (15.4) 62.0 (16.1) 62.2 (16.1)
Object P/R 42.8 / 21.0 42.7 / 21.0 42.8 / 21.1 22.4 / 13.3 22.2 / 13.3 22.5 / 13.4

CPlex QP: Pixel P/R 75.4 / 71.5 75.3 / 71.6 75.4 / 71.9 61.0 / 60.0 60.8 / 59.8 61.0 / 60.0
Pixel Parse 78.6 (39.4) 78.4 (38.6) 78.5 (38.7) 62.0 (15.4) 62.0 (16.1) 62.3 (16.3)

Table 9 Evaluation of iterative refinement. See text and caption of Table 8 for definition of performance measures.

Test Image

75.8%

Initial Parse

0.25 / 0.06

Inferred Objects

74.3%

Final Parse
boat
building
sky
road
person

Fig. 15 LMO test example where instance-level inference
ends up hurting the pixel-level labeling. The initial pixel la-
beling for the boat is fairly good, but the water gets misla-
beled as “road.” Since “boat” cannot overlap “road,” a boat
instance is never turned on, which in turn decreases the pixel
labeling performance.

pixel accuracy over our own previous system [29]. By

comparing the initial pixel parse numbers in the top

row of Table 8 to the final ones for the greedy and

CPlex inference, we can see that our overall and aver-

age per-class rates drop slightly for the LMO dataset

and increase slightly for LM+SUN. As we have learned

from our experiments, alternating between pixel-level

and instance-level inference only tends to improve per-

formance in complex scenes where overlap relationships

can help correct errors (e.g., in Figure 9, some wrong

“building” labels get corrected to “trashcan”). Because

most images in the LMO dataset are simplistic, with

few overlapping instances, our iterative method does

not produce any improvement. What is worse, in some

cases, enforcing sensible overlap constraints can actu-

ally hurt the pixel-level accuracy. For example, in the

LMO test image shown in Figure 15, the water on the

bottom initially gets incorrectly but confidently labeled

as “road.” Then, though there is a decent initial “boat”

labeling as well as good candidate “boat” masks, these

masks cannot be selected as they have an inconsistent

overlap with “road.” Because there are so few boats in

the test images, this brings down the “boat” class rate

for the entire test set from 14.8% to 2.3%, and is almost

single-handedly responsible for the drop in average per-

class rate from the initial to the final pixel labeling ac-

curacy on LMO. As for LM+SUN, it has more complex

and varied scenes, and we do see small gains from initial

to final pixel labeling accuracy on that dataset.

For pixel-level inference, our natural baseline is given

by the initial pixel parse with no object potentials.

However, we do not expect a large improvement, since

their addition tends to affect only a small number of

pixels. Nevertheless, on LMO we obtain a small in-

crease in the per-pixel rate and on the more challenging

LM+SUN dataset we obtain almost a 1% improvement

in both the per-pixel and per-class rates.

Figures 16 and 17 show the output of our instance-

level inference on the same test images as Figures 13

and 14. It is satisfying to observe, for example, that

our layered representation is able to correctly separate

the mass of “taxi” labels from Figure 14(a) into four

different instances.

5.3 Running Times

To conclude our evaluation, we examine the computa-

tional requirements of our system. Unless stated oth-

erwise, the following timings are given for our MAT-

LAB implementation (feature extraction and file I/O

excluded) on the LM+SUN dataset on a six-core 3.4

GHz Intel Xeon workstation with 48 GB of RAM.

First, let us discuss training time requirements. There

are a total of 354,592 objects in the LM+SUN training

set, and we have to train a per-exemplar detector for

each of them. For exemplar-SVMs, the average train-

ing time per detector is 472.3 seconds; training all of

them would require 1,938 days on a single core, but

we do it on a 512-node cluster in approximately four

days. For the LDA-based per-exemplar detectors, the

training time is dominated by the covariance compu-

tation, which is an online process requiring 4.82 sec-

onds per image, or 60.5 hours for the entire LM+SUN

dataset on a single core. This can also be trivially paral-

lelized across our 512-node cluster, to bring the training

time down to roughly 20 minutes. Leave-one-out pars-

ing of the training set (see below for average region-

and detector-based parsing times per image) takes 939

hours on a single core, or about two hours on the clus-

ter. Next, training a set of 232 one-vs-all SVMs takes

a total of one hour on a single core for the linear SVM

and ten hours for the approximate RBF. Note that the

respective feature dimensionalities are 464 and 4,000;

this nearly tenfold dimensionality increase accounts for
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(a)

Test Image Ground Truth

93.5%

Initial Parsing

0.69 / 0.43

Final Objects

0.69 / 0.43

Oclusion Ordering

car
person
building
plant
sidewalk
sky
streetlight
tree
road
staircase

(b) 86.0% 0.86 / 0.30 0.86 / 0.30

car
building
road
sidewalk
sky
mountain
person
window
awning

(c) 88.1% 0.67 / 0.27 0.67 / 0.27

car
person
building
road
sky
mountain
sidewalk
fence
plant

(d) 92.0% 0.55 / 0.40 0.55 / 0.40

car
streetlight
sign
bridge
road
sky
tree
building

Fig. 16 Layered inference results on the same LMO test images as in Figure 13. In (a) and (b), the blob of cars is split up
into individual instances, though the ordering of the cars is incorrect in (b). In (c), three people are correctly identified on
the right side. In (d), the streetlight, missing from ground truth, is found, though three instances are predicted because there
turns out to be very little overlap between the three thin masks and thus they form a valid configuration.

the tenfold increase in running time. Tuning the SVM

parameters by fivefold cross-validation on the cluster

only increases the training time by a factor of two.

Next, we look at the computational requirements

of our pixel-level and object-level inference methods at

test time. For pixel labeling, the computation of the

region-based data term takes an average of 27.5 seconds

per image. The computation of the detector-based data

term involves running an average of 4,842 detectors per

image in 47.4 seconds total. Computation of the com-

bined SVM data term takes an average of 8.9 seconds

for the linear kernel and 124 seconds for the approxi-

mate RBF (once again, the tenfold increase in feature

dimensionality and the overhead of computing the em-

bedding account for the increase in running time). CRF

inference takes an average of 6.8 seconds per image for

the 8-connected α-expansion setup and 4.2 seconds for

the fully connected CRF.

For instance-level inference, generating the “stuff”

candidate instances amounts to two stuff label CRF

inference computations taking to an average of 2.3 sec-

onds each (4.6 seconds total). Combining the “stuff”

and “thing” candidate instances produces on average

316.9 candidates per image. Computing the scores and

overlap penalties for all candidate instances takes on

average 47.3 seconds and is typically our most expen-

sive step. Finally, inference using our greedy method

and CPlex takes an average of 0.026 and 2.8 seconds,

respectively. Both methods exhibit exponential growth

in runtime as a function of the number of candidate in-

stances, but for images with roughly 1000 candidate in-

stances CPlex took about 73.9 seconds while our greedy

inference took 0.71 seconds. Occlusion order inference

takes less than 0.002 seconds and is thus negligible. One

iteration of combining the instance inference with the

CRF pixel label inference takes an average of 4.3 sec-

onds for greedy and 7.1 seconds for CPlex. Note this

does not include the stuff candidate generation or the

instance score computation as we compute these once

per image, not at every iteration.

6 Discussion

We have demonstrated a system capable of densely la-

beling pixels in complex scene images, as well as pre-

dicting individual object instances and their occlusion

ordering. This system achieves state-of-the-art per-pixel
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(a)

Test Image Ground Truth

92.7%

Final Parsing

0.40 / 0.11

Final Objects

0.40 / 0.11

Occlusion Ordering
building
road
taxi
sky
truck
car
fence
sidewalk
streetlight

(b) 75.1% 0.59 / 0.21 0.59 / 0.21

building
road
tree
car
window
wheel
sidewalk
plant
headlight

(c) 77.9% 0.40 / 0.22 0.40 / 0.22

wall
bed
curtain
window
mountain
sea
ceiling
painting

(d) 59.0% 0.33 / 0.38 0.33 / 0.38

wall
mirror
toilet
floor
person
glass
cup
counter top
towel
trash can

Fig. 17 Layered inference results on the same LM+SUN test images as in Figure 14. For pixel labeling we report the per-pixel
rate and for instance prediction we report Object P/R underneath each image. In (a), we successfully separate the four taxi
cabs, including the highly occluded one second from the left. In (b), our system finds the two central cars and is even close to
identifying the cropped one on the right, but also incorrectly infers an additional car on the left. In (c), we find the bed and
walls of the room. In (d), we find the toilet and glass.

accuracy on two challenging datasets containing up to

tens of thousands of training images and hundreds of

class labels and produces compelling qualitative results,

as shown in Figures 16 and 17.

Ultimately, we would like our system to function

on open universe datasets, such as LabelMe [26], that

are constantly evolving and do not have a pre-defined

list of classes of interest. The region-based component

of our system already has this property [30]. In prin-

ciple, per-exemplar detectors are also compatible with

the open-universe setting, since they can be trained in-

dependently as new exemplars come in. Our SVM com-

bination scheme is the only part of the method that

relies on batch offline training (including leave-one-out

parsing of the entire training set). In the future, we plan

to investigate online methods for this step.

To improve the accuracy of our instance-level pre-

diction, a key direction is generating better candidate

instances. Currently, we manually divide our label set

into “stuff” and “thing” classes and use different meth-

ods to generate candidate objects for each. To an ex-

tent, this division is arbitrary, as many classes can some-

times appear as “things” with well-defined boundaries,

and sometimes as diffuse “stuff.” In the future, we plan

to investigate ways of generating candidate object masks

that would not rely on a hard things-vs-stuff split. We

also plan to develop a more principled treatment of

background classes than the one afforded by our non-

exclusive SVM formulation. Finally, it would be very

interesting to explore more powerful inter-object con-

straints than the ones based on overlap. For example, in

Figure 17(d), our system spuriously infers a tiny “per-

son” instance on the bathroom floor next to the much

larger toilet. In order to figure out that “person” does

not belong, we would need to reason about adjacent

objects, not merely overlapping ones, as well as their

relative sizes – reasoning of which our system is cur-

rently not capable.

Acknowledgements This research was supported in part by
NSF grant IIS 1228082, DARPA Computer Science Study
Group (D12AP00305), Microsoft Research Faculty Fellow-
ship, and Xerox. We thank Arun Mallya for helping to adapt
the LDA detector code of [12].

References

1. Boykov, Y., Kolmogorov, V.: Computing geodesics and
minimal surfaces via graph cuts. In: ICCV (2003)

2. Boykov, Y., Kolmogorov, V.: An experimental compari-
son of min-cut/max-flow algorithms for energy minimiza-
tion in vision. PAMI 26(9), 1124–37 (2004)



Finding Things: Image Parsing with Regions and Per-Exemplar Detectors 21

3. Brostow, G.J., Shotton, J., Fauqueur, J., Cipolla, R.: Seg-
mentation and recognition using structure from motion
point clouds. In: ECCV (2008)

4. Dalal, N., Triggs, B.: Histograms of oriented gradients for
human detection. In: CVPR (2005)

5. Eigen, D., Fergus, R.: Nonparametric image parsing using
adaptive neighbor sets. In: CVPR (2012)

6. Everingham, M., Van Gool, L., Williams, C.K.I., Winn,
J., Zisserman, A.: The PASCAL Visual Object Classes
Challenge 2008 (VOC2008) Results. http://www.pascal-
network.org/challenges/VOC/voc2008/workshop/index.html

7. Farabet, C., Couprie, C., Najman, L., LeCun, Y.: Scene
parsing with multiscale feature learning, purity trees, and
optimal covers. In: ICML (2012)

8. Felzenszwalb, P.F., Girshick, R.B., McAllester, D.,
Ramanan, D.: Object detection with discriminatively
trained part-based models. PAMI 32(9), 1627–1645
(2010)

9. Floros, G., Rematas, K., Leibe, B.: Multi-class image la-
beling with top-down segmentation and generalized ro-
bust PN potentials. In: BMVC (2011)

10. Gould, S., Fulton, R., Koller, D.: Decomposing a scene
into geometric and semantically consistent regions. In:
ICC (2009)

11. Guo, R., Hoiem, D.: Beyond the line of sight: labeling the
underlying surfaces. In: ECCV (2012)

12. Hariharan, B., Malik, J., Ramanan, D.: Discriminative
decorrelation for clustering and classification. In: ECCV
(2012)

13. Heitz, G., Koller, D.: Learning spatial context: Using stuff
to find things. In: ECCV, pp. 30–43 (2008)

14. IBM: Cplex optimizer. http://www.ibm.com/software/
commerce/optimization/cplex-optimizer/ (2013)

15. Isola, P., Liu, C.: Scene collaging: Analysis and synthesis
of natural images with semantic layers. In: ICCV (2013)

16. Kim, B., Sun, M., Kohli, P., Savarese, S.: Relating things
and stuff by high-order potential modeling. In: ECCV
Workshop on Higher-Order Models and Global Con-
straints in Computer Vision (2012)

17. Kolmogorov, V., Zabih, R.: What energy functions can
be minimized via graph cuts? PAMI 26(2), 147–59 (2004)

18. Krahenbuhl, P., Koltun, V.: Efficient inference in fully
connected crfs with gaussian edge potentials. In: NIPS
(2011)

19. Ladický, L., Sturgess, P., Alahari, K., Russell, C., Torr,
P.H.: What, where & how many? combining object de-
tectors and CRFs. In: ECCV (2010)

20. Liu, C., Yuen, J., Torralba, A.: Nonparametric scene
parsing via label transfer. PAMI 33(12), 2368–2382
(2011)

21. Malisiewicz, T., Gupta, A., Efros, A.A.: Ensemble of
exemplar-SVMs for object detection and beyond. In:
ICCV (2011)

22. Myeong, H.J., Chang, Y., Lee, K.M.: Learning object re-
lationships via graph-based context model. CVPR (2012)

23. Rahimi, A., Recht, B.: Random features for large-scale
kernel machines. In: NIPS (2007)

24. Rother, C., Kolmogorov, V., Blake, A.: “grabCut” – in-
teractive foreground extraction using iterated graph cuts.
SIGGRAPH (2004)

25. Russell, B.C., Torralba, A.: Building a database of 3d
scenes from user annotations. In: CVPR (2009)

26. Russell, B.C., Torralba, A., Murphy, K.P., Freeman,
W.T.: Labelme : a database and web-based tool for image
annotation. IJCV 77(1-3), 157–173 (2008)

27. Shotton, J., Winn, J.M., Rother, C., Criminisi, A.: Tex-
tonboost for image understanding: Multi-class object
recognition and segmentation by jointly modeling tex-
ture, layout, and context. IJCV 81(1), 2–23 (2009)

28. Sturgess, P., Alahari, K., Ladický, L., Torr, P.H.S.: Com-
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